SNX9 regulates tubular invagination of the plasma membrane through interaction with actin cytoskeleton and dynamin 2.

نویسندگان

  • Narae Shin
  • Namhui Ahn
  • Belle Chang-Ileto
  • Joohyun Park
  • Kohji Takei
  • Sang-Gun Ahn
  • Soo-A Kim
  • Gilbert Di Paolo
  • Sunghoe Chang
چکیده

Dynamic membrane remodeling during intracellular trafficking is controlled by the intricate interplay between lipids and proteins. BAR domains are modules that participate in endocytic processes by binding and deforming the lipid bilayer. Sorting nexin 9 (SNX9), which functions in clathrin-mediated endocytosis, contains a BAR domain, however, the properties of this domain are not well understood. Here we show that SNX9 shares many properties with other BAR domain-containing proteins, such as amphiphysin and endophilin. SNX9 is able to deform the plasma membrane, as well as liposomes, into narrow tubules and recruit N-WASP and dynamin 2 to these tubules via its SH3 domain. SNX9-induced tubulation is antagonized by N-WASP and dynamin 2 while it is enhanced by perturbation of actin dynamics. However, SNX9 also has several unique properties. The tubulating activity requires the BAR and PX domains, as well as the low-complexity (LC) domain, which binds the Arp2/3 complex. SNX9 also binds to PtdIns(4)P-5-kinases via its PX domain and its tubulating activity is regulated by phosphoinositides. In addition, the kinase activity of PtdIns(4)P-5-kinases is stimulated by interaction with SNX9, suggesting a positive feedback interaction between SNX9 and PtdIns(4)P-5-kinases. These results suggest that SNX9 functions in the coordination of membrane remodeling and fission via interactions with actin-regulating proteins, endocytic proteins and PtdIns(4,5)P2-metabolizing enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SNX9 couples actin assembly to phosphoinositide signals and is required for membrane remodeling during endocytosis.

Multiple modes of endocytosis require actin-dependent remodeling of the plasma membrane; however, neither the factors linking these processes nor their mechanisms of action are understood. The sorting nexin, SNX9, localizes to clathrin-coated pits where it interacts with dynamin and functions in clathrin-mediated endocytosis. Here, we demonstrate that SNX9 also localizes to actin-rich structure...

متن کامل

SNX18 shares a redundant role with SNX9 and modulates endocytic trafficking at the plasma membrane.

SNX18 and SNX9 are members of a subfamily of SNX (sorting nexin) proteins with the same domain structure. Although a recent report showed that SNX18 and SNX9 localize differently in cells and appear to function in different trafficking pathways, concrete evidence regarding whether they act together or separately in intracellular trafficking is still lacking. Here, we show that SNX18 has a simil...

متن کامل

Actin-binding protein 1 regulates B cell receptor-mediated antigen processing and presentation in response to B cell receptor activation.

The BCR serves as both signal transducer and Ag transporter. Binding of Ags to the BCR induces signaling cascades and Ag processing and presentation, two essential cellular events for B cell activation. BCR-initiated signaling increases BCR-mediated Ag-processing efficiency by increasing the rate and specificity of Ag transport. Previous studies showed a critical role for the actin cytoskeleton...

متن کامل

Sorting nexin 9 participates in clathrin-mediated endocytosis through interactions with the core components.

Sorting nexin 9 (SNX9) belongs to a family of proteins, the sorting nexins, that are characterized by the presence of a subclass of the phosphoinositide-binding phox domain. SNX9 has in its amino terminus a Src homology 3 domain and a region with predicted low complexity followed by a carboxyl-terminal part containing the phox domain. We previously found that SNX9 is one of the major proteins i...

متن کامل

A Dynamin-Actin Interaction Is Required for Vesicle Scission during Endocytosis in Yeast

Actin is critical for endocytosis in yeast cells, and also in mammalian cells under tension. However, questions remain as to how force generated through actin polymerization is transmitted to the plasma membrane to drive invagination and scission. Here, we reveal that the yeast dynamin Vps1 binds and bundles filamentous actin. Mutational analysis of Vps1 in a helix of the stalk domain identifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 121 Pt 8  شماره 

صفحات  -

تاریخ انتشار 2008